
Guide

Mastering
Kubernetes
Security Posture
Management:

A Step-by-Step
Guide

© 2025 All Rights Reserved Uptycs www.uptycs.com| | i

GUIDE

Table of Contents

Kubernetes Security Posture Management: A Key New Paradigm 01

Mastering Kubernetes Security #1: NSA Hardening for KSPM 02

Mastering Kubernetes Security #2: Container Vulnerability
Management

08

Mastering Kubernetes Security #3: Runtime Admission Controls 15

Mastering Kubernetes Security #4: Authorization, Access & Secrets 20

Mastering Kubernetes Security #5: Incident Response with
Detections

25

Elevating Your Kubernetes Security Posture 25

https://docs.google.com/document/d/1QFZFFfMbCxPjss77qt5IL-ZlOwOITA4CnOGleyitEos/edit?tab=t.0#heading=h.kicardlkbjzc
https://docs.google.com/document/d/1QFZFFfMbCxPjss77qt5IL-ZlOwOITA4CnOGleyitEos/edit?tab=t.0#heading=h.x9ah7y9wdb21
https://docs.google.com/document/d/1QFZFFfMbCxPjss77qt5IL-ZlOwOITA4CnOGleyitEos/edit?tab=t.0#heading=h.x9ah7y9wdb21
https://docs.google.com/document/d/1QFZFFfMbCxPjss77qt5IL-ZlOwOITA4CnOGleyitEos/edit?tab=t.0#heading=h.tvhhzshuv6gb
https://docs.google.com/document/d/1QFZFFfMbCxPjss77qt5IL-ZlOwOITA4CnOGleyitEos/edit?tab=t.0#heading=h.3f9vsk1896ta
https://docs.google.com/document/d/1QFZFFfMbCxPjss77qt5IL-ZlOwOITA4CnOGleyitEos/edit?tab=t.0#heading=h.855cgm7tfamb
https://docs.google.com/document/d/1QFZFFfMbCxPjss77qt5IL-ZlOwOITA4CnOGleyitEos/edit?tab=t.0#heading=h.855cgm7tfamb

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 1

GUIDE

Kubernetes Security Posture
Management: A Key New Paradigm

Kubernetes is central to modern cloud-native application
development, providing the flexibility to scale and manage
workloads efficiently. Yet, its complexity introduces
significant security challenges, including misconfigurations,
container vulnerabilities, runtime threats, and gaps in
access controls. Without a proactive approach to
Kubernetes security, organizations risk exposing sensitive
data and compromising critical systems.

This guide offers a comprehensive approach to Kubernetes
Security Posture Management (KSPM), breaking down
actionable strategies for securing your clusters. From NSA
hardening and container vulnerability management to
runtime security and advanced access controls, you’ll learn
how to strengthen your defenses, achieve compliance, and
operationalize security across your Kubernetes
environments. Let’s dive in.

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 2

GUIDE

01 Mastering Kubernetes Security #1: NSA Hardening for KSPM

Organizations across the globe are embracing Kubernetes
security posture management and harnessing its power to
deliver cloud-native applications on top cloud providers like
Amazon Web Services (AWS), Azure, and Google Cloud
Platform. However, Kubernetes' default security limitations
mean safeguarding your cluster and data should be a top
priority.

Kubernetes security posture management can be a
challenge, particularly since clusters are a common source
of misconfigurations in the cloud, can be shared between
multiple teams, and the learning curve for Kubernetes is
steep. But there is help available. Last August, the National
Security Agency (NSA) and the Cybersecurity and
Infrastructure Security Agency (CISA) released an updated
version of the Kubernetes Hardening Guide.

The guide helps organizations solve those key
misconfigurations and provides guidance to enterprises on
solving key misconfigurations such as�

� Access controls. The most secure access follows the
 model for Kubernetes, i.e., only give what is

absolutely necessary. However, in Kubernetes, many
users can end up getting cluster role binding privileges,
which gives them access to the entire cluster when they
don’t necessarily need or shouldn’t have that - especially
in shared multi-tenant cluster use cases�

� Network Security. Since all pods can talk to each other
by default, this increases the lateral attack surface inside
the cluster. The NSA guide gives great insight into how to
solve this using Kubernetes network policies�

� Container runtime issues. Examples of this include
overprivileged containers and containers with mutable
file systems, which can lead to vulnerabilities and can
lead to breakout.

zero trust

https://www.uptycs.com/blog/mastering-kubernetes-security/nsa-hardening
https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF
https://www.cncf.io/blog/2022/11/04/seven-zero-trust-rules-for-kubernetes/

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 3

GUIDE

While the insights the guide provides are a fantastic first
step, there are some key challenges we saw in the market
when it came to using the recommendations�

� Operationalizing the Insights and Misconfiguration
Failures: While the guide was a great start, it was hard for
customers to keep up with an entire single PDF guide and
operationalize it as part of their day to day processes
without codifying the rules. Non-compliant infrastructure
should be visible in a single pane of glass, and any failures
should be easily assignable to DevOps and platform
teams responsible for the infrastructure�

� Enabling continuous Kubernetes security posture
management checks on existing and new infrastructure:
Every time a new cluster is deployed or a new
namespace is provisioned, the same NSA checks should
be done on new infrastructure without manual
intervention. Moreover, without a system in place, it is
hard for customers to do daily checks, leading them to do
it only on a quarterly basis, which can lead to significant
blind spots, especially since assets are ephemeral. For
example, a container can be spun up and down after
doing something non-compliant in minutes. Therefore,
continuous checks and alerting are key.

� Remediation info and real-time evidence: Sometimes,
while it can be great to have the information as a CISO, in
order to make sure your dev and platform teams
understand the risk of the issue, real-time evidence is
needed. If remediation steps are provided, that leads to
less friction in fixing the issue as the devs have a path
forward on what to do.

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 4

GUIDE

While these three challenges can seem daunting, the Uptycs
platform streamlines visibility into key compliance risks and
provides real-time evidence and remediation steps that are
continuous, actionable, and insightful. Let’s see an example
of this in action:

 Assessing the state of the system

When you land on the compliance dashboard, you get a
single pane of glass view into the different standards being
run across your cluster fleet. Any cluster you enroll, whether
EKS, GKE, AKS, or even ones you manage yourself, can
undergo the same compliance scanning process.
Compliance scanning is done every 6 hours and is
configurable. This gives the user a good understanding that
their assets are being continuously monitored for
compliance issues and an overall sense of the state of their
system at any present moment.  

In the example below, we see that roughly 40% of our assets
are compliant when it comes to NSA Hardening, and 60%
are non-compliant. We can see that 63 rules passed while
101 failed, and below, we get a breakdown across the
different NSA Hardening categories of our pass/fail rate.

Step 1:

Figure 1 - Compliance overview

Next, let’s look at what actual rules are failing so we can
appropriately triage.

Triaging through the rules

Next, we can click the list of rules and get an overview
across different categories of what is passed, what is failing,
and how many assets for the given rule are passing/failing.
The good thing is that just like the NSA Hardening Guide,
Uptycs also logically organizes it into the relevant sections
so you can focus on a specific security task that is most
relevant to you instead of traversing through tables of 100s of
rules.

Step 2:

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 5

GUIDE

Figure 2 - Rules listing

Clicking a specific rule, for example, NSA-23 - Defining
Resource Quota Policies, gives us the clusters that are
passing and failing this rule. In this case, most of my clusters
do not have resource quota policies defined for their
namespaces. This can be problematic, especially in shared
cluster environments where one user assigned to a
namespace can over-inflate their namespace and limit
other applications and pods from getting deployed. This can
be especially problematic if you have important software
add-ons for security, observability, cost metrics, and more
that constantly need to be running on the cluster.

Figure 3 - Cluster listing

Suppose you assign this to a DevOps or platform engineer to
take a closer look at. Let’s see how we can use the evidence-
based view to get more details.

 Generating the evidence and remediation
to take action

Many times, as a security ops engineer, you may get
pushback asking why this check is so important. By clicking
the purple magnifying glass, you get an evidence-based
view that gives the real source of why this issue is so
important, the evidence behind it, and the remediation
steps. For example, for the no resource policies defined
issue, you can see exact remediation steps of how one can
define a ResourceQuota with CPU and memory limits for a
given namespace.

Step 3:

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 6

GUIDE

Figure 4 - Resource quota evidence

Another example below shows the importance of
implementing a default network policy to prevent lateral
movement inside the cluster. This is especially important
because, by default, every pod can talk to one another
inside a cluster, increasing your lateral surface attack in
case one pod with vulnerabilities is compromised.

Figure 5 - Network policy evidence

In Summary

Uptycs provides a 3-step process of visualizing, triaging, and
generating evidence to remediate that allows CISOs and
security admins to continuously monitor Kubernetes
security posture management. This process applies to NSA
Hardening and any standard such as CIS Kubernetes
Benchmarks out of the box.

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 7

GUIDE

02 Mastering Kubernetes Security #2:  
Container Vulnerability Management

When you run cloud-native workloads, vulnerabilities are
always found, whether a certain vulnerable package or a
known exploit. You could have thousands or even hundreds
of thousands of vulnerabilities at any time. Multiply that by
the number of container assets and images, and you have a
big challenge of figuring out where to start.  

Let’s dive into vulnerability management and how to
implement shift left controls to prevent any vulnerabilities,
malware, or secrets from entering your SDLC and supply
chain.

Top Kubernetes and container vulnerability
management challenges

Here are some of the challenges we see when it comes to
vulnerability management for
today�

� Vulnerability prioritization and key performance
indicator (KPI) based measurement: With all the noise
and scale of ephemeral workloads such as containers
and pods, SecOps admins many times have to go through
a lot of noise to get at the heart of the issues, such as
which vulnerabilities are most critical or which ones need
the most fixing based on their specific environments.
Moreover, a lack of KPIs means that vulnerability
management solutions today are good with information
but not good with providing actionable insights to
operationalize vulnerability fixing at scale�

� Insecure/fragmented security across the software
development life cycle (SDLC): Without a secure DevOps
pipeline, customers must be more reactive in
remediating vulnerabilities. No images with known
vulnerabilities leaking credentials or containing malware
should ever be promoted into a position where they could
easily or accidentally be deployed to production systems.
In addition, SecOps admins also have to use disparate
tooling to catch vulnerabilities in their CI versus their
registry, which can lead to blind spots and more time
spent evaluating results versus taking action!

Kubernetes and containers

https://www.uptycs.com/blog/mastering-kubernetes-security/vuln-mangagment
https://www.uptycs.com/blog/mastering-kubernetes-security/vuln-mangagment
https://www.uptycs.com/products/attack-surfaces/containers-kubernetes

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 8

GUIDE

� Insecure/fragmented security across the software
development life cycle (SDLC): Without a secure DevOps
pipeline, customers must be more reactive in
remediating vulnerabilities. No images with known
vulnerabilities leaking credentials or containing malware
should ever be promoted into a position where they could
easily or accidentally be deployed to production systems.
In addition, SecOps admins also have to use disparate
tooling to catch vulnerabilities in their CI versus their
registry, which can lead to blind spots and more time
spent evaluating results versus taking action�

� Lack of flexible controls to fit your developer needs:
While critical vulnerabilities may be important to be
aware of, there may not be a fix available. It's also
beneficial to differentiate between dev-test and
production environments. While always enforcing rules in
production, consider only auditing in dev-test, ensuring CI
image builds aren't halted, and keeping developers
unhindered.

Let’s see how Uptycs unified CNAPP and XDR security
platform enables you to solve these challenges while
providing a single solution for all your Kubernetes/containers
vulnerability management from code to cloud.

Step 1: Vulnerability prioritization and

KPI measurement

Figure 1 – Container vulnerabilities dashboard in the

Uptycs platform

The Uptycs platform gives you a single place to start for
anything and everything on your Kubernetes and containers
vulnerability management! Specifically, the dashboard
empowers SecOps admins to do the following�

� Prioritize what is important: Uptycs does intelligent
prioritization for you by leveraging key, actionable metrics
such as�

� Whether a fix is available or no�

� Whether the vulnerability is exploitable or not

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 9

GUIDE

The Uptycs platform gives you a single place to start for
anything and everything on your Kubernetes and containers
vulnerability management! Specifically, the dashboard
empowers SecOps admins to do the following�

� Prioritize what is important: Uptycs does intelligent
prioritization for you by leveraging key, actionable metrics
such as�

� Whether a fix is available or no�

� Whether the vulnerability is exploitable or no�

� CVSS Score�

� Number of assets affected

By starting here you can instantly cut the noise down and
start with what is most important�

� Operationalize daily/weekly triages: Through metrics
such as what are your new daily vulnerabilities or net new
this week - SecOps admins now have an easy way to see
what is most relevant now and assign a JIRA ticket or add
to an exception list with one single click.�

� Continuously measure and improve: Using metrics such
as average close time, CISOs and SecOps admins can
continuously track and measure their overall velocity
when fixing vulnerabilities and improving continuously.
The Uptycs platform gives you a resolved vulnerability
view to measure and audit your vulnerability fixes,
including specific package updates.

Figure 2 – Resolved vulnerabilities shown in the

Uptycs platform

Step 2: Implementing shift left controls across

your SDLC

Next, in order to be more proactive in fixing your
vulnerabilities earlier in the SDLC, Uptycs offers CI and
Registry scanning capabilities that are extremely easy to
onboard, allowing you to secure your innovation pipeline
from code to cloud.

Figure 3 - Secure your innovation pipeline from code to cloud

Capability Supported Platforms

CI Scanning
Jenkins, GitHub Actions, GitLab,

AWS Codebuild, Travis CI

Registry Scanning

JFrog Artifactory, Private Docker,

Amazon ECR, Azure ACR, Google

GCR

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 10

GUIDE

What sets Uptycs apart?

We can uniquely scan images across CI and Registry for
vulnerabilities, malware, and secrets - ensuring your code is
always at its safest.  

Ready to elevate your Kubernetes and container security?
Explore how Uptycs can empower your strategy at Uptycs
Containers & Kubernetes.

Figure 4 – CI Image scanning in the Uptycs platform

When you start with CI Scanning, the Uptycs platform shows
you the security results and passed and failed image builds
so that you can correlate your security findings to your SDLC.   

You also get the same view with registry scanning, allowing
admins to filter by a given CVE vulnerability and check on

what parts of their SDLC, CI Registry, and Runtime that
vulnerability is present.

Figure 5 – Registry scanning in the Uptycs platform

As you start to prioritize fixes of images across your SDLC or
look at your most vulnerable images, you get a single pane of
glass view of your image security across the SDLC to answer
key questions such as�

� Did the developer image go through the security controls
across the SDLC? If not, what was missed�

� Did the image get deployed from a trusted registry?
Images should only be pulled from trusted registries that
are ideally being scanned for vulnerabilities�

� Did the developer bypass/not use the enterprise registry
and instead deploy from registries such as DockerHub?

https://www.uptycs.com/products/attack-surfaces/containers-kubernetes
https://www.uptycs.com/products/attack-surfaces/containers-kubernetes

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 11

GUIDE

These insights can be key to ensuring your development
teams and business units follow the right process while
ensuring you have end-to-end security controls across your
developer pipeline.

Figure 6 – Image traceability through the SDLC

Step 3: Enabling developer-friendly guardrails

While you may want to enable guardrails in runtime, a
delicate balance must be achieved in the SDLC to ensure
you have security controls in place while not hindering
developer velocity.   

In order to facilitate this, Uptycs offers key capabilities as
part of the CI Scanning capabilities, such as the following:

� Grace Periods: Users may configure a vulnerability
"Grace Period," which allows a vulnerability, once first
detected, to remain within an image for a set amount of
time. If the vulnerability remains within an image once the
Grace Period has elapsed, then builds will fail until the
vulnerability is no longer detected. This grants developers
time to remediate the newly detected vulnerabilities
without immediately interrupting their task when the
vulnerability was first discovered�

� Policy Configurations: What if you wanted to ignore
vulnerabilities with no fixes as part of your CI Scanning?
Or only fail based on a set of critical CVEs or even ignore
certain vulnerabilities? As part of your Uptycs CI
Scanning configuration, you can enable certain policy
configurations and flags to tailor your vulnerability
management to your business needs.  

#Configure vulnerability scanning.  

 Vulnerabilities: 
 fatal_cvss_score: 7 # Configure the maximum allowable 
 CVSS score.  

 ignore_no_fix: true # Ignore any detected vulnerabilities  
 for which there are no known fixes.

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 12

GUIDE

� Image Admission Controller: With the image admission
controller (Fig. 6), you can implement secure guardrails by
blocking images coming from registries scanning in
Uptycs and with critical or high vulnerabilities from being
used in runtime. This gives SecOps admins confidence
that critical or high vulnerabilities will never make it into
their container and Kubernetes runtime environments
while allowing developers the necessary time to fix the
image vulnerabilities earlier in the SDLC.

Figure 7 – Image admission controller in Uptycs platform

In Summary

Navigating vulnerabilities in Kubernetes and container
environments is complex. As these vulnerabilities mount,
challenges arise in prioritization, securing the SDLC, and
ensuring developer flexibility. Uptycs unified CNAPP and
XDR is designed to meet these challenges head-on. By
offering intelligent vulnerability prioritization, seamless
integration with the SDLC through CI and Registry scanning,
and developer-centric guardrails, Uptycs ensures
businesses can effectively manage risks while fostering
innovation.

https://www.uptycs.com/blog/what-is-cnapp-meaning/

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 13

GUIDE

03 Mastering Kubernetes Security #3: Runtime Admission Controls

Kubernetes is quickly becoming one of the most popular
platforms for developing and deploying applications.
However, simplifying application deployment can open up
numerous security risks unless you take protective
measures to secure your Kubernetes environment.

Let’s focus on Runtime Admission Controls (RACs). RACs
add a layer of protection that ensures compliance and
verification after the admission controller has approved an
object. By implementing appropriate rules and processes
with runtime admission controls, your organization can
ensure protection from any malicious or improper code
execution.

SecOps Teams want to ensure that insecure resources, be it
a pod, container, or even an ingress controller, are deployed
with secure defaults. Insecure and non-compliant resources
or resources with insecure defaults should be blocked from
deployment. At the same time, developers want to move fast
and not be overly restricted when it comes to deploying
simple applications, especially in dev-test environments.

Benefits of Admission Control

The concept of admission control was created to enforce
runtime policies. Admission controllers in a cluster provide
the ability to set policies that can enable secure guardrails
for deployments of Kubernetes objects, be it a cluster role
binding, workload, namespace, and more. At the time of
resource deployment, the Kubernetes API intercepts the
request and validates it against a set of policies deployed on
the cluster. If the policy is not passed, the object deployment
will fail. These policies can be tailored to meet business
needs and set secure defaults. For example, you can write
policies around�

� Privileged pods: Kubernetes provides Pod Security
Admission policies to be able to prevent insecure
workloads such as privileged pods from being deployed.
Privileged pods, if exploited, can lead to container
breakout, which can lead to the exploitation of an entire
host�

� Namespace resource limits: Each developer or business
unit typically gets its own namespace in shared cluster
setups. However, when these namespaces lack
predefined resource limits, it often leads to competition
for resources, causing issues for customers. This can lead
to a security issue as an attacker can deploy and inflate a
namespace to a point with a large application that can
kick out other mission-critical applications on a cluster.
Admission policies can check for default resource limits
defined on a namespace manifest and fail namespace
deployments that don’t have limits and/or quotas defined.

https://www.uptycs.com/blog/mastering-kubernetes-security/runtime-admission-controls

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 14

GUIDE

� Namespace resource limits: Each developer or business
unit typically gets its own namespace in shared cluster
setups. However, when these namespaces lack
predefined resource limits, it often leads to competition
for resources, causing issues for customers. This can lead
to a security issue as an attacker can deploy and inflate a
namespace to a point with a large application that can
kick out other mission-critical applications on a cluster.
Admission policies can check for default resource limits
defined on a namespace manifest and fail namespace
deployments that don’t have limits and/or quotas defined�

� Insecure ingress controller: Network security is a key
challenge in Kubernetes from a dev/test point of view. To
test if things actually work, developers deploy an nginx or
kong ingress controller that allows any traffic specified
using a wildcard hostname. This is especially seen given
the number of IaC examples that exist today. However,
this can lead to public internet exposure in production
environments, a crucial security risk as any malicious
unauthorized user can access the cluster. Admission
policies can be written to check for specific hostname
strings such as */wildcard and block appropriately.

Several open-source solutions are available to implement
admission control, including OPA Gatekeeper (which
employs Rego for policy definition) and Kyverno. Additionally,
Kubernetes offers built-in features like Pod Security
Admission and Pod Security Standards to address critical
concerns, such as preventing privilege escalations.
However, some key challenges occur today when using
admission controls. Let’s take a look at those challenges.

Key challenges with admission contro�

� Breaking production: While there are many ways to do
admission control today, DevOps teams in many
situations are hamstrung in enforcing admission control
in production environments because it can break
production applications if an incorrect policy prevents an
object from being blocked. In those situations, developers
may not be well equipped to understand the
consequences of violating those policies, especially if
those policies are primarily configured only by SecOps
teams. Solutions, such as OPA Gatekeeper, can do dry
runs or audits rather than enforcement to understand
what policies would break without preventing actual
deployment�

� Lack of integration with DevSecOps tooling: While
customers may have tooling for CI or registry scanning for
vulnerabilities, malware, and secrets, most admission
controllers today don’t look at the data that comes from
the scanning results to make an informed decision on
whether to allow or prevent a container image from being
used for container deployment. The siloed decision-
making process results in additional time spent
correlating data and cautiously managing basic runtime
deployments.

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 15

GUIDE

� Increased cognitive load for developers: Policy controls,
much like vulnerability management, are essential.
However, developers need to easily identify the most
relevant policy failures. Simple developer-friendly tooling
that allows engineers to triage what audit failures are
most relevant to their specific namespaces and pods in a
single UI is key to allowing developers to remediate
issues faster�

� Inconsistent policy enforcement across cluster fleet:
Management of policies at cluster fleet-level scale can be
an extreme challenge, especially when there is a lack of
visibility in which policies are applied where and
duplication. Customers need single-pane-of-glass
visibility to see which policies are enforced and to
categorize the most important issues across different
types of Kubernetes resources so the appropriate
engineers get visibility into what is most relevant for their
work�

� Aligning/deciding criteria for admission: Deciding the
right balance of controls between SecOps and
engineering can be a big challenge and requires
consistent communication as new requirements come
in. At the same time, how do you decide what to enforce,
especially to strive for consistency? The indicators of
compromise or default secure configurations must be
broad enough to support all your different environments.

Enforcing admission controls using Uptycs

Uptycs solves the key challenges outlined above by offering
native admission control for the following:

Image deployments: Uptycs can integrate directly with
registry scanning to block images with critical or high
vulnerabilities found in a registry scan from being used for
container deployments on a cluster. This allows SecOps
teams to be confident to shift left and catch security issues
earlier in the software development lifecycle (SDLC) while
enabling those same guardrails using valuable information
from the registry scan result for runtime deployments.

In the example below, we see image failures for the
Zookeeper image because 42 critical and high
vulnerabilities were found.

Figure 1 - Image admission failures

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 16

GUIDE

Runtime deployments: Uptycs integrates with OPA
Gatekeeper and acts as an actual admission controller for
OPA Gatekeeper so that you don’t have to deploy it
separately. Customers can create their own OPA
Gatekeeper policies based on business needs or use some
of the turnkey policies that Uptycs provides. With these
policies stored in Git, customers can use GitOps to push the
policies to their cluster fleet and gain single-pane-of-glass
visibility at both the policy and individual asset levels.

Figure 2 - Runtime Policy admission failures

As seen above, at the policy level, SecOps teams get a
single-pane-of-glass view of their admission failures (i.e.,
which resources failed deployment and against which
policies), as well as audits (i.e., which policies are being
violated the most for existing resources that are already
deployed).

In the example below, we see a wildcard ingress controller
that has failed deployment because it is using a wildcard
host, which can be used to intercept traffic from other
applications and allow any malicious attacker on the
Internet to enter the cluster.

Figure 3 - Example admission failure for ingress controller

Similarly, from a DevSecOps point of view, developers can
look at audit failures for the specific namespaces they have
access to rather than having to cut through all the noise
across all the policies. This allows them to easily prioritize
and reduce the cognitive load in understanding which
policies they need to fix for their specific applications.

The example below shows that the nginxns namespace has
one audit failure. The DevOps or developer engineer
responsible for that namespace can click the audit failure to
see what failed.

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 17

GUIDE

Figure 4 - Audit visibility at the namespace level

These controls can easily be enabled as part of the Uptycs
protect capabilities during onboarding or via a simple helm
update!

In Closing

As Kubernetes ecosystems continue to grow and evolve,
ensuring secure defaults and robust hardening measures
become paramount. Admission controls play a pivotal role in
this security landscape, balancing developers' agility and the
imperative for stringent security protocols.

While challenges exist, solutions like Uptycs offer a holistic
approach to seamlessly integrate security throughout the
development lifecycle. By harnessing the power of
admission controls and integrating them with other security
facets, organizations can fortify their Kubernetes
deployments against potential misconfigurations and
threats. As we journey ahead, embracing these tools and
strategies will be key to building a resilient and efficient
Kubernetes environment.

Stay tuned for our next blog in this series, where we’ll discuss
key threat indicators for Kubernetes in Uptycs based on
Kubernetes GOAT.

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 18

GUIDE

04 Mastering Kubernetes Security #4:  
Authorization, Access & Secrets

The ease of managing and deploying K8S applications
comes with security challenges, particularly in access
control. Role-Based Access Control (RBAC) alone is not
enough to secure access to your K8s, especially when
managing sensitive data or "secrets."  

The heart of the matter is, RBAC operates within a
predefined scope of rules which, while useful, might not
suffice in the face of evolving security threats and complex,
dynamic Kubernetes environments. Moreover, the
management of sensitive information, known as secrets,
intertwines with RBAC, adding another layer of complexity to
the security narrative.  

Let’s explore why RBAC might not be enough to solve your
Kubernetes access control challenges, and what you should
be doing instead.

Role-Based Access Control (RBAC) is a standard
mechanism for managing who has access to the system’s
resources and what actions they can perform.

RBAC in Kubernetes

In Kubernetes, RBAC allows administrators to define roles
with specific permissions like viewing, creating, or deleting
resources, and assign these roles to users or groups.

Typical configurations involve setting up roles and role
bindings that tie users/groups to roles. However, common
misconfigurations can occur, such as overly permissive
roles, incorrect role bindings, or stale roles that remain in the
system even after they are no longer needed. These
misconfigurations can open up avenues for unauthorized
access or actions within the Kubernetes environment,
posing significant security risks.  

For instance, consider a scenario where an admin
mistakenly binds a "delete" permission to a general user role,
instead of a more restrictive admin role. This
misconfiguration in role binding could potentially allow any
general user to delete crucial resources within the
Kubernetes environment, causing significant disruption or
data loss.

https://www.uptycs.com/blog/mastering-kubernetes-security/role-based-access-control
https://www.uptycs.com/blog/mastering-kubernetes-security/role-based-access-control

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 19

GUIDE

Secrets management in Kubernetes

Secrets in Kubernetes serve as a means to store and
manage sensitive information like passwords, tokens, and
keys. Managing these secrets securely is paramount to
ensuring the integrity and confidentiality of the system.  

RBAC plays a role in secrets management by controlling who
can access or manage secrets. However, common
misconfigurations like overly permissive access to secrets,
or improperly secured secrets (e.g., storing secrets in plain
text or version control systems), can lead to exposure of
sensitive data.  

Furthermore, the intertwining of RBAC with secrets
management can sometimes obscure the security
landscape, making it challenging to ensure both robust
access control and secure secrets management. As we
delve deeper, we’ll unravel the intricacies of this interaction
and how a more holistic approach can provide a robust
solution to these challenges.

Managing authorization, access, and

secrets in Kubernetes

Kubernetes provides a robust platform for orchestrating
containerized applications, however, managing
authorization, access, and secrets within K8s poses its own
set of challenges. Here are three best practices to ensure a
secure K8s environment�

�� Leverage Role-Based Access Control (RBAC) 
Role-Based Access Control (RBAC) is a key pillar to
Kubernetes security. RBAC allows you to assign roles and
permissions to users, ensuring that only those with the
correct access can view or modify data. By using RBAC,
you can ensure that only authorized users are able to
access sensitive data and resources, helping to protect
your system from malicious actors�

�� Monitor Permissions and Access 
This will allow you to identify any potential risks in your
system and take steps to secure them before they are
exploited by malicious actors. Additionally, monitoring
permissions on an ongoing basis will help you quickly
identify any changes in user access that could indicate a
potential breach or other security issue.

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 20

GUIDE

�� Monitor Permissions and Access 
This will allow you to identify any potential risks in your
system and take steps to secure them before they are
exploited by malicious actors. Additionally, monitoring
permissions on an ongoing basis will help you quickly
identify any changes in user access that could indicate a
potential breach or other security issue. This is especially
This is especially important when onboarding new
applications and monitoring default service accounts
that may have access to all permissions by default, even
if assigned a specific role binding�

�� Leverage Advanced Security Solutions 
Advanced security solutions like Uptycs can also be used
to map real-time threats to risky RBAC configurations,
giving you end-to-end visibility of your Kubernetes
environment and helping you remove any blind spots in
your security posture. With Uptycs, you can gain insights
into which users have access to what resources, as well
as detect suspicious activity across all of your Kubernetes
clusters in real time.

Advanced security solutions like Uptycs can also be used to
map real-time threats to risky RBAC configurations, giving
you end-to-end visibility of your Kubernetes environment
and helping you remove any blind spots in your security
posture. With Uptycs, you can gain insights into which users
have access to what resources, as well as detect suspicious
activity across all of your Kubernetes clusters in real time. In
addition you can map real-time data plane threats with
RBAC control plane misconfigurations.

Let's walk through an example:

First, in the Uptycs UI, under 'Detections', an alert highlights
insecure Kubernetes kubectl access from a compromised
pod. This can be risky because kubectl should typically be
performed outside the cluster using a secure kubeconfig. If
the kubeconfig inside the cluster is accessed it could lead to
more unauthorized access to nodes, secrets, namespaces,
and more.

The threat is mapped to the MITRE ATT&CK Framework with
details like the default service account used, pod's
namespace, and source IP. Navigating to the detection
graph, we see the service account attempted a deployment.

Figure 1 - Detection of insecure Kubernetes kubectl access
in Uptycs

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 21

GUIDE

We then move to the 'RBAC Access Monitor' for this cluster,
filtering by the compromised service account. It reveals
excessive privileges across the cluster, including access to
vulnerable pods, indicating a severe security risk. Uptycs
showcases its strength in correlating real-time threats with
RBAC misconfigurations, aiding in pinpointing and
addressing security issues in Kubernetes.

Figure 2 - Excessive privileges revealed in Uptycs’ RBAC
Access Monitor

In Closing

Navigating authorization, access, and secrets management
in Kubernetes environments can often feel like a daunting
task. RBAC provides a foundational layer of control, however,
the dynamic and complex nature of K8s environments calls
for a more comprehensive and proactive approach to
security.   

Tools like Uptycs further simplify this journey by offering a
unified platform equipped with the necessary capabilities to
address the challenges head-on, ensuring a secure,
compliant, and efficient K8s environment. As the landscape
of cybersecurity continues to evolve, embracing a holistic
approach to K8s security that extends beyond RBAC, and
aligning with robust security solutions like Uptycs, will prove
instrumental in staying ahead of threats and ensuring a
resilient K8s ecosystem.

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 22

GUIDE

05 Mastering Kubernetes Security #5:  
Incident Response with Detections

With the increasing attack surface and volume of noise
generated from alerts, CISOs and SecOps are fatigued with
having to figure out what is a false positive versus what is an
actual threat that needs attention. Let’s discuss a framework
for catching different threats to secure and harden your
Kubernetes clusters.

 Think like a threat actor and list the most
common types of attacks

While there are many different misconfigurations in
Kubernetes, there are a handful of different types of attacks
that are typical and can cover a lot of ground. Many
frameworks such as OWASP Top 10 exist out there today that
talk about the different security principles. However, one
that we highly recommend looking at and have seen many
of our own customers ask for is Kubernetes GOAT. What’s
exciting about Kubernetes GOAT is that it covers many end-
to-end examples for example:

3 Steps to uncovering & addressing

Kubernetes threats

Step 1:

�� Privilege escalation�

�� Container breakout into the host exposing cluster details�

�� Port scanning�

�� RBAC least privilege misconfigs (similar to our last blog
post)�

�� SSRF attacks

Kubernetes GOAT also provides details on how to actually
replicate the attack. These insights are key to getting into the
mind of an attacker and seeing what kind of commands they
would perform, the starting points for most key attacks, and
more.

https://www.uptycs.com/blog/threat-research-report-team/mastering-kubernetes-security/incident-response
https://www.uptycs.com/blog/threat-research-report-team/mastering-kubernetes-security/incident-response
https://madhuakula.com/kubernetes-goat/docs/scenarios/
https://www.uptycs.com/blog/mastering-kubernetes-security/role-based-access-control
https://www.uptycs.com/blog/mastering-kubernetes-security/role-based-access-control

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 23

GUIDE

Figure 1 - Kubernetes container escape example

The Container Escape Example is a great one to look at and
replicate to see how a malicious attacker can access the
host/VM from a pod/container and then use that to access
other cluster-level info, nodes, and even secrets. Other types
of attacks can include:�

� SSRF attacks�

� Exposed services on node ports�

� Reverse shell executions to exploit a system’s
vulnerabilities and attack the host�

� Denial of service based on exploiting services that don’t
have memory or CPU limits (this can be extremely
problematic in multi-tenant scenarios where stressing
one namespace or pod can take down the entire cluster)

As seen in Figure 2 below, Uptycs can aggregate these kinds
of attacks based on the latest threat intel so you can stay up
to date and have the best possible breadth, including from
frameworks such as Kubernetes GOAT and more!

Figure 2 - Different types of Kubernetes detections

Step 2: Address all the blind spots through breadth
of telemetry collection

In order to build robustness around your detections, you
need to collect telemetry from some key sources to
eliminate any blind spots. Let’s take a look and briefly
describe how Uptycs in particular tackles these:

https://madhuakula.com/kubernetes-goat/docs/scenarios/scenario-4/container-escape-to-the-host-system-in-kubernetes-containers/welcome/

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 24

GUIDE

Audit Logs: Audit logs contain key information from the
Kubernetes API about any new resources created, actions
performed, etc. Audit logging should always be turned on in
your cluster from a compliance point of view as well as to
triage certain issues. However, what audit logs can provide is
a way for you to understand what policies, roles, and
infrastructure entities are being created or modified. For
example, it can tackle issues around�

� RBAC - cluster role bindings: Typically you want to limit
the cluster roles and permissions inside your cluster. If
cluster role bindings are unnecessarily being created it
should be monitored. In addition, you want to perform a
continuous audit of these types of roles and limit the
permissions to only the specific actions needed.�

� Network policies: Typically to enable a zero-trust model,
you want to limit the number of possible connections
through network policies. If your network policies,
especially cluster-level ones that enable tenant isolation
are being modified, it’s important for you to audit those
actions before something inadvertently takes place.

Uptycs maps collects audit log data and maps them into key
sets of security events and detections for you. In fact, we
have over 60 different types of detections just around audit
logs that we collect as part of our Kubernetes security events
package!

Runtime telemetry: In addition to audit log data on the
control plane, you want to understand in real time what is
happening in your data plane. This allows you to map what is
happening in real time to key misconfigurations in your
control plane. Some types of information you may want to
collect are�

� Process events: If a malicious attacker enters your
container or pod, you want to identify the process running
to stop it, kill it, and more.�

� Files: These fall into two key buckets.�

�� One is files that are insecure whether they be a
misconfigured kubeconfig file that has overprivileged
access or cryptominer malware. Understanding what
files are present in your system in real-time can be key
to your ability to threat hunt faster�

�� Second is files that are not insecure but are important
to your cluster operations. This could include files like
secrets/sensitive data or certificates. You should
always make sure these files are at the minimum
encrypted and ideally not accessible from within the
cluster and pod itself in case those are compromised.
Typically secrets should be stored in a secrets
manager such as Hashicorp Vault or AWS Secrets
Manager.

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 25

GUIDE

� Socket events: If insecure network connections are
made to a malicious IP, then it is important to detect those
and understand where they came from. Socket events
can help you identify that.

Uptycs collect this data via our runtime osquery-based
sensor which is able to go in-depth and collect these
different types of event data.

Once you identify the telemetry sources, correlate them
using SQL or a rule engine into different types of events so
that you can quickly identify and act on any data found in real
time. Uptycs with its real-time security data lake empowers
users by�

� Automating checks of the most known detections:
based on event rules that map back to the real-time
security data lake and data collected from a variety of
sources, Uptycs eases the burden of having to build event
rules by detecting and alerting users on the most
common types of detections.�

� Providing a scalable security detection engine: Uptycs
can scale to millions of events and prioritize the threats
that are most relevant and risky via ML and anomaly-
based detections as well as correlating telemetry at scale
from the different sources mentioned.

� Empowering customizability through detections as
code: Allowing SecOps to build their own detections
based on Sigma rules as well as using simple SQL queries
through the single console investigate engine and
security data lake.

 Think like a threat hunter

Once you have a system for identifying threats, it’s important
to understand where your Kubernetes threat came from and
perform the right techniques. Let’s take a look at an example:

Example: Identifying a malicious port scan process through
YARA rule signature

One common attack is using a port scan via nmap as
. Nmap enumerates for exposed ports and

vulnerabilities associated with those open ports. In order to
think like a threat actor and stop this attack, we need to think
about the following:

How is the attack being masked�

� If it’s an internal user, we need to know their intentions
behind the execution. Are they doing it for genuine
reasons? And are they doing it from a namespace that
has access to sensitive information or their own app
namespace for debugging purposes?

Step 3:

described here

https://www.bugcrowd.com/glossary/nmap-network-mapper-vulnerability-scanner/#:~:text=Nmap%20sends%20packets%20to%20ports,as%20port%20discovery%20or%20enumeration.

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 26

GUIDE

� If it’s an internal user, we need to know their intentions
behind the execution. Are they doing it for genuine
reasons? And are they doing it from a namespace that
has access to sensitive information or their own app
namespace for debugging purposes�

� If it’s an external user where is the malicious IP coming
from and how. We need to look for compromises in the
system. Do I have an exposed node port? Or a network
policy/ingress controller that allows any time of traffic?

How is the attack being masked?

In Figures 3 and 4 below we see that the attacker is renaming
nmap to something else to hide from defense systems.
Uptycs gives SecOps teams superpowers by allowing them
to analyze the process using a YARA rule signature. In this
case, we see that Uptycs shows that the port scan, nmap is
being masqueraded behind /qwer in the process.

Figure 3 - Original nmap hiding behind /qwer

Figure 4 - YARA rule scan being performed to discover
masqueraded nmap execution

From there, Uptycs of course offers container process
remediation to kill malicious processes running on a
container such as the masqueraded nmap. These kinds of
threat-hunting capabilities and mindset are needed,
however, to avoid these kinds of attacks.

© 2025 All Rights Reserved Uptycs www.uptycs.com| | 27

GUIDE

06 Elevating Your Kubernetes Security Posture

From NSA hardening guidelines and container vulnerability
management to runtime admission controls and effective
secrets management, Kubernetes Security Posture
Management (KSPM) empowers organizations to tackle the
unique security challenges of cloud-native ecosystems.

Each chapter of this guide has highlighted critical security
concerns and actionable solutions for bolstering your
Kubernetes defenses:

Hardening with NSA guidance: Establish
foundational security practices to reduce
misconfigurations and strengthen access
controls.

Container vulnerability management: Prioritize
and address risks across the software
development lifecycle (SDLC) to maintain a
robust security posture.

Runtime admission controls: Implement
guardrails to ensure compliance and mitigate
risks in real time.

Access and secrets management: Go beyond
RBAC to secure sensitive data and eliminate
common configuration gaps.

Incident detection and response: Adopt a
proactive threat-hunting mindset to detect,
prioritize, and neutralize vulnerabilities.

As Kubernetes adoption grows, so does the complexity of
securing dynamic, distributed workloads. Tools like Uptycs
help simplify this journey by providing a unified platform to
visualize, prioritize, and act on threats with unparalleled
efficiency. With real-time monitoring, actionable insights,
and automated remediation, Uptycs empowers security and
DevOps teams to confidently safeguard their Kubernetes
environments.

By following the strategies outlined in this guide and
leveraging advanced solutions, your organization can not
only protect its assets but also build a secure, compliant, and
resilient Kubernetes ecosystem. Start transforming your
Kubernetes security today.

Uptycs is dedicated to leading security innovations in hybrid cloud environments,

ensuring robust protection and enabling our customers to innovate safely and

efficiently. Included in the 2024 CNAPP Market Guide, Uptycs provides comprehensive

security solutions that bridge the gap from code to cloud. Our platform excels in Cloud

Workload Protection (CWPP), Vulnerability Management, Cloud Security Posture

Management (CSPM), Detection & Response, Software Pipeline Security, XDR, and

Risk & Compliance. Trusted by leading enterprises like PayPal and Comcast, Uptycs

transforms potential vulnerabilities into fortified security, ensuring your digital

environments are safeguarded from development through runtime.

Secure Everything from Dev to Runtime

Learn more at Uptycs.com

https://www.uptycs.com/

	Cover v1
	Page - 0
	Page - 1
	Page - 2
	Page - 3
	Page - 4
	Page - 5
	Page - 6
	Page - 7
	Page - 8
	Page - 9
	Page - 10
	Page - 11
	Page - 12
	Page - 13
	Page - 14
	Page - 15
	Page - 16
	Page - 17
	Page - 18
	Page - 19
	Page - 20
	Page - 21
	Page - 22
	Page - 23
	Page - 24
	Page - 25
	Page - 26
	Page - 27
	Page - End

